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Abstract

Stimulus selectivity of sensory neurons is often characterized by estimating their
receptive field properties such as orientation selectivity. Receptive fields are usu-
ally derived from the mean (or covariance) of the spike-triggered stimulus ensem-
ble. This approach treats each spike as an independent message but does not take
into account that information might be conveyed through patterns of neural activ-
ity that are dis tributed across space or time. Can we find a concise description for
the process ing of a whole population of neurons analogous to the receptive field
for s ingle neurons? Here, we present a generalization of the linear receptive field
which is not bound to be triggered on individual spikes but can be meaningfully
linked to dis tributed response patterns . More precisely, we seek to identify those
s timulus features and the corresponding patterns of neural activity that are most
reliably coupled. We use an extens ion of reverse-correlation methods based on
canonical correlation analys is . The resulting population receptive fields span the
subspace of s timuli that is most informative about the population response. We
evaluate our approach us ing both neuronal models and multi-electrode recordings
from rabbit retinal ganglion cells . We show how the model can be extended to
capture nonlinear s timulus -response relationships us ing kernel canonical correla-
tion analys is , which makes it poss ible to tes t different coding mechanisms . Our
technique can also be used to calculate receptive fields from multi-dimensional
neural measurements such as those obtained from dynamic imaging methods .

1 Introduction

Visual input to the retina cons is ts of complex light intens ity patterns . The interpretation of these
patterns constitutes a challenging problem: for computational tasks like object recognition, it is not
clear what information about the image should be extracted and in which format it should be repre-
sented. S imilarly, it is difficult to assess what information is conveyed by the multitude of neurons
in the visual pathway. Right from the firs t synapse, the information of an individual photoreceptor
is s ignaled to many different cells with different temporal filtering properties , each of which is only
a small unit within a complex neural network [ 20] . Even if we leave the difficulties imposed by
nonlinearities and feedback as ide, it is hard to judge what the contribution of any particular neuron
is to the information transmitted.
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The prevalent tool for characterizing the behavior of sensory neurons , the spike triggered average,
is based on a quas i- linear model of neural responses [ 1 5 ] . For the sake of clarity, we cons ider an
idealized model of the s ignaling channel

y = Wx + ξ , (1 )

where y = ( y1 , . . . , yN ) T denotes the vector of neural responses , x the s timulus parameters , W =
(w1 , . . . , wN ) T the filter matrix with row ‘ k ’ containing the receptive field wk of neuron k , and ξ
is the noise. The spike-triggered average only allows description of the stimulus -response function
(i. e. the wk ) of one s ingle neuron at a time. In order to unders tand the collective behavior of a
neuronal population, we rather have to unders tand the behavior of the matrix W , and the structure
of the noise correlations Σ ξ : Both of them influence the feature selectivity of the population.

Can we find a compact description of the features that a neural ensemble is most sens itive to? In
the case of a s ingle cell, the receptive field provides such a description: It can be interpreted as the
“favorite s timulus” of the neuron, in the sense that the more s imilar an input is to the receptive field,
the higher is the spiking probability, and thus the firing rate of the neuron. In addition, the receptive
field can eas ily be estimated us ing a spike-triggered average, which, under certain assumptions ,
yields the optimal es timate of the receptive field in a linear-nonlinear cascade model [ 1 1 ] .

If we are cons idering an ensemble of neurons rather than a s ingle neuron, it is not obvious what to
trigger on: This requires assumptions about what patterns of spikes or modulations in firing rates
across the population carry information about the s timulus . Rather than address ing the question
“what features of the stimulus are correlated with the occurence of spikes”, the question now is :
“What s timulus features are correlated with what patterns of spiking activity?” [ 1 4] . Phrased in the
language of information theory, we are searching for the subspace that contains most of the mu-
tual information between sensory inputs and neuronal responses . By this dimensionality reduction
technique, we can find a compact description of the process ing of the population.

As an efficient implementation of this s trategy, we present an extens ion of reverse-correlation meth-
ods based on canonical correlation analys is . The resulting population receptive fields (PRFs) are not
bound to be triggered on individual spikes but are linked to response patterns that are s imultaneous ly
determined by the algorithm.

We calculate the PRF for a population cons is ting of uniformly spaced cells with center-surround
receptive fields and noise correlations , and estimate the PRF of a population of rabbit retinal ganglion
cells from multi-electrode recordings . In addition, we show how our method can be extended to
explore different hypotheses about the neural code, such as spike latencies or interval coding, which
require nonlinear read out mechanisms .

2 From reverse correlation to canonical correlation

We regard the stimulus at time t as a random variable Xt ∈ R
n , and the neural response as Yt ∈ R

m .
For s implicity, we assume that the s timulus cons is ts of Gauss ian white noise, i. e. E(X ) = 0 and
Cov (X ) = I .

The spike-triggered average a of a neuron can be motivated by the fact that it is the direction in
s timulus -space maximizing the correlation-coefficient

ρ =
Cov (aTX, Y1 )�
Var (aTX )Var (Y1 )

. (2)

between the filtered stimulus aTX and a univariate neural response Y1 . In the case of a neural
population, we are not only looking for the stimulus feature a, but also need to determine what
pattern of spiking activity b it is coupled with. The natural extens ion is to search for those vectors
a1 and b1 that maximize

ρ1 =
Cov (aT1 X, b

T
1 Y )�

Var (aT1 X )Var (bT
1 Y )
. (3 )

We interpret a1 as the s timulus filter whose output is maximally correlated with the output of the
“response filter” b1 . Thus , we are s imultaneous ly searching for features of the stimulus that the
neural sys tem is selective for, and the patterns of activity that it uses to s ignal the presence or absence
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of this feature. We refer to the vector a1 as the (firs t) population receptive field of the population,
and b1 is the response feature corresponding to a1 . If a hypothetical neuron receives input from the
population, and wants to decode the presence of the stimulus a1 , the weights of the optimal linear
readout [ 1 6] could be derived from b1 .

Canonical Correlation Analys is (CCA) [ 9] is an algorithm that finds the vectors a1 and b1 that
maximize (3 ) : We denote the covariances ofX and Y by Σ x , Σ y , the cross -covariance by Σ xy , and
the whitened cross -covariance by

C = Σ (− 1 / 2 )
x Σ xyΣ

(− 1 / 2 )
y . (4)

Let C = UDVT denote the s ingular value decomposition of C , where the entries of the diagonal
matrix D are non-negative and decreas ing along the diagonal. Then, the k - th pair of canonical

variables is given by ak = Σ
(− 1 / 2 )
x uk and bk = Σ

(− 1 / 2 )
y vk , where uk and vk are the k - th column

vectors of U and V , respectively. Furthermore, the k - th s ingular value of C , i. e. the k - th diagonal
entry ofD is the correlation-coefficient ρk of aTk Xand bT

k Y. The random variables aTi X and aTj X
are uncorrelated for i �= j .

Importantly, the solution for the optimization problem in CCA is unique and can be computed ef-
ficiently via a s ingle eigenvalue problem. The population receptive fields and the characteris tic
patterns are found by a joint optimization in stimulus and response space. Therefore, one does
not need to know—or assume—a priori what features the population is sens itive to, or what spike
patterns convey the information.

The firs tK PRFs form a bas is for the subspace of s timuli that the neural population is most sens itive
to, and the individual bas is vectors ak are sorted according to their “informativeness” [ 1 3 , 1 7] .

The mutual information between two one-dimensional Gauss ian Variables with correlation ρ is given
by MIGaus s = − 1

2 log( 1 − ρ
2 ) , so maximizing correlation coefficients is equivalent to maximizing

mutual information [ 3 ] . Assuming the neural response Y to be Gauss ian, the subspace spanned by
the firs tK vectors BK = (b1 , . . . , bK ) is also the K- subspace of s timuli that contains the maximal
amount of mutual information between stimuli and neural response. That is

BK = argmax
B ∈ Rn × k

det
`
BTΣ yB

´

det
“
BT

“
Σ y − ΣT

xyΣ
(− 1 )
x Σ xy

”
B
” . (5 )

Thus , in terms of dimensionality reduction, CCA optimizes the same objective as oriented PCA
[ 5 ] . In contras t to oriented PCA, however, CCA does not require one to know explicitly how the
response covariance Σ y = Σ s + Σ ξ splits into s ignal Σ s and noise Σ ξ covariance. Ins tead, it uses the
cross -covariance Σ xy which is directly available from reverse correlation experiments . In addition,
CCA not only returns the most predictable response features b1 , . . . bK but also the most predictive
s timulus components AK = (a1 , . . . aK ) .

For general Y and for s timuli X with elliptically contoured dis tribution, MIGaus s − J (A
TX ) pro-

vides a lower bound to the mutual information between ATX and BTY , where

J (AT
X ) =

1

2
log( det( 2πeATΣ xA) ) − h (AT

X ) (6)

is the Negentropy of ATX , and h (ATX ) its differential entropy. S ince for elliptically contoured
dis tributions J (ATX ) does not depend on A, the PRFs can be seen as the solution of a variational
approach, maximizing a lower bound to the mutual information. Maximizing mutual information
directly is hard, requires extens ive amounts of data, and usually multiple repetitions of the same
stimulus sequence.

3 The receptive field of a population of neurons

3.1 The effect of tuning functions and noise correlations

To illus trate the relationship between the tuning-functions of individual neurons and the PRFs [ 22] ,
we calculate the firs t PRF of a s imple one-dimensional population model cons is ting of center-
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surround neurons . Each tuning function is modeled by a “Difference of Gauss ians” (DOG)

f ( x ) = exp

„

−

1

2

“ x − c

σ

” 2
«

− A exp

 

−

1

2

„
x − c

η

« 2
!

(7)

whose centers c are uniformly dis tributed over the real axis . The width η of the negative Gauss ian is
set to be twice as large as the width σ of the pos itive Gauss ian. If the area of both Gauss ians is the
same (A = 1 ) , the DC component of the DOG-fillter is zero, i. e. the neuron is not sens itive to the
mean luminance of the stimulus . If the ratio between both areas becomes substantially unbalanced,
the DC component will become the larges t s ignal (A ≈ 0) .

In addition to the parameter A , we will s tudy the length scale of noise correlations λ [ 1 8 ] . Specifi-
cally, we assume exponentially decaying noise correlation with Σ ξ ( s ) = exp(− | s | /λ ) .

As this model is invariant under spatial shifts , the firs t PRF can be calculated by finding the spatial
frequency at which the SNR is maximal. That is , the firs t PRF can be used to es timate the passband
of the population transfer function. The SNR is given by

SNR(ω) =

„
1 + λ2ω2

2λ

„

e
− ω 2 σ 2

+ A
2
e
− η 2 ω 2

− 2Ae
−

σ 2 + η 2

2
ω 2

« « 2

. (8 )

The passband of the firs t population filter moves as a function of both parameters A and λ . It equals
the DC component for small A (i. e. large imbalance) and small λ ( i. e. short correlation length) . In
this case, the mean intens ity is the s timulus property that is most faithfully s ignaled by the ensemble.

λ

A
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Figure 1 : Spatial frequency of the firs t PRF for the model described above. λ is the length-scale of
the noise correlations , A is the weight of the negative Gauss ian in the DOG-model. The region in
the bottom left corner (bounded by the white line) is the part of the parameter-space in which the
PRF equals the DC component.

3.2 The receptive field of an ensemble of retinal ganglion cells

We mapped the population receptive fields of rabbit retinal ganglion cells recorded with a whole-
mount preparation. We are not primarily interes ted in prediction performance [ 1 2] , but rather in
dimensionality reduction: We want to characterize the filtering properties of the population.

The neurons were s timulated with a 1 6 × 1 6 checkerboard cons is ting of binary white noise which
was updated every 20ms . The experimental procedures are described in detail in [ 21 ] . After spike-
sorting, spike trains from 32 neurons were binned at 20ms resolution, and the response of a neuron
to a stimulus at time t was defined to cons is t of the the spike-counts in the 1 0 bins between 40ms
and 240ms after t . Thus , each population response Yt is a 320 dimensional vector.

Figure 3 . 2 A) displays the firs t 6 PRFs , the corresponding patterns of neural activity (B) and their
correlation coefficients ρk (which were calculated us ing a cross -validation procedure) . It can be seen
that the PRFs look very different to the usual center-surrond structure of retinal ganglion. However,
one should keep in mind that it is really the space spanned by the PRFs that is relevant, and thus be
careful when interpreting the actual filter shapes [ 1 5 ] .

For comparison, we also plotted the s ingle-cell receptive fields in Figure 3 . 2 C) , and their projections
into the spaced spanned by the firs t 6 PRFs . These plots suggest that a small number of PRFs might
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be sufficient to approximate each of the receptive fields . To determine the dimensionality of the
relevant subspace, we analyzed the correlation-coefficients ρk . The Gauss ian Mutual Information

MIGaus s = − 1
2

�K
k=1 log( 1 − ρ2k ) is an estimate of the information contained in the subspace

spanned by the firs t K PRFs . Based on this measure, a 1 2 dimensional subspace accounts for 90%
of the total information.

In order to link the empirically es timated PRFs with the theoretical analys is in section 3 . 1 , we
calculated the spectral properties of the firs t PRF. Our analys is revealed that most of the power is in
the low frequencies , suggesting that the population is in the parameter-regime where the s ingle-cell
receptive fields have power in the DC-component and the noise-correlations have short range, which
is certainly reasonable for retinal ganglion cells [ 4] .
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Figure 2: The population receptive fields of a group of 32 retinal ganglion cells : A) the firs t 6 PRFs ,
as sorted by the correlation coefficient ρk B) the response features bk coupled with the PRFs . Each
row of each image corresponds to one neuron, and each column to one time-bin. Blue color denotes
enhanced activity, red suppressed. It can be seen that only a subset of neurons contributed to the firs t
6 PRFs . C) The s ingle-cell receptive fields of 24 neurons from our population, and their projections
into the space spanned by the 6 PRFs .
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Figure 3 : A) Correlation coefficients ρk for the PRFs . Estimates and error-bars are calculated us ing
a cross -validation procedure. B) Gauss ian-MI of the subspace spanned by the firs t K PRFs .

4 Nonlinear extensions using Kernel Canonical Correlation Analysis

Thus far, our model is completely linear: We assume that the s timulus is linearly related to the
neural responses , and we also assume a linear readout of the response. In this section, we will
explore generalizations of the CCA model us ing Kernel CCA: By embedding the stimulus -space
nonlinearly in a feature space, nonlinear codes can be described.

Kernel methods provide a framework for extending linear algorithms to the nonlinear case [ 8 ] . After
projecting the data into a feature space via a feature maps φ and ψ , a solution is found using linear
methods in the feature space. In the case of Kernel CCA [ 1 , 1 0, 2, 7] one seeks to find a linear

relationship between the random variables X̂ = φ (X ) and Ŷ = ψ (Y ) , rather than between X and
Y . If an algorithm is purely defined in terms of dot-products , and if the dot-product in feature space
k ( s , t) = �ψ ( s ) , ψ ( t) � can be computed efficiently, then the algorithm does not require explicit
calculation of the feature maps φ and ψ . This “kernel- trick” makes it poss ible to work in high-
(or infinite)-dimensional feature spaces . It is worth mentioning that the space of patterns Y itself
does not have to be a vector space. Given a data-set x1 . . . xn , it suffices to know the dot-products
between any pair of training points , Kij : = �ψ ( yi ) , ψ ( yj ) � .

The kernel function k ( s , t) can be seen as a s imiliarity measure. It incorporates our assumptions
about which spike-patterns should be regarded as s imilar “messages” . Therefore, the choice of the
kernel-function is closely related to specifing what the search-space of potential neural codes is . A
number of dis tance- and kernel-functions [ 6, 1 9] have been proposed to compute dis tances between
spike-trains . They can be des igned to take into account precisely timed pattern of spikes , or to be
invariant to certain transformations such as temporal jitter.

We illus trate the concept on s imulated data: We will use a s imilarity measure based on the metric
D interval [ 1 9] to es timate the receptive field of a neuron which does not use its firing rate, but rather
the occurrence of specific interspike intervals to convey information about the s timulus . The metric
D interval between two spike-trains is essentially the cost of matching their intervals by shifting, adding
or deleting spikes . (We set k ( s , t) = exp(−D ( s , t) . In theory, this function is not guaranteed
to be pos itive definite, which could lead to numerical problems , but we did not encounter any in
our s imulation. ) If we cons ider coding-schemes that are based on patterns of spikes , the methods
described here become useful even for the analys is of s ingle neurons . We will here concentrate on a
s ingle neuron, but the analys is can be extended to patterns dis tributed across several neurons .

Our hypothetical neuron encodes information in a pattern cons is ting of three spikes : The relative
timing of the second spike is informative about the s timulus : The bigger the correlation between
receptive field and stimulus � r , s t � , the shorter is the interval. If the receptive field is very diss imilar
to the stimulus , the interval is long. While the timing of the spikes relative to each other is precise,
there is jitter in the timing of the pattern relative to the stimulus . Figure 4 A) is a ras ter plot of
s imulated spike-trains from this model, ordered by � r , s t � . We also included noise spikes at random
times .
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Figure 4: Coding by spike patterns : A) Receptive field of neuron described in Section 4. B) A
subset of the s imulated spike-trains , sorted with respect to the s imilarity between the shown stimulus
and the receptive field of the model. The interval between the firs t two informative spikes in each
trial is highlighted in red. C) Receptive field recovered by Kernel CCA, the correlation coefficient
between real and estimated receptive field is 0. 93 . D) Receptive field derived us ing linear decoding,
correlation coefficient is 0 . 02 .

Us ing these spike-trains , we tried to recover the receptive field r without telling the algorithm what
the indicating pattern was . Each stimulus was shown only once, and therefore, that every spike-
pattern occurred only once. We simulated 5000 s timulus presentations for this model, and applied
Kernel CCA with a linear kernel on the stimuli, and the alignment-score on the spike-trains . By
us ing incomplete Cholesky decompositions [ 2] , one can compute Kernel CCA without having to
calculate the full kernel matrix. As many kernels on spike trains are computationally expens ive, this
trick can result in substantial speed-ups of the computation. The receptive field was recovered (see
Figure 4) , despite the highly nonlinear encoding mechanism of the neuron. For comparison, we also
show what receptive field would be obtained us ing linear decoding on the indicated bins .

Although this neuron model may seem slightly contrived, it is a good proof of concept that, in
principle, receptive fields can be estimated even if the firing rate gives no information at all about
the s timulus , and the encoding is highly nonlinear. Our algorithm does not only look at patterns that
occur more often than expected by chance, but also takes into account to what extent their occurrence
is correlated to the sensory input.

5 Conclusions

We set out to find a useful description of the stimulus -response relationship of an ensemble of
neurons akin to the concept of receptive field for s ingle neurons . The population receptive fields are
found by a joint optimization over s timuli and spike-patterns , and are thus not bound to be triggered
by s ingle spikes .

We estimated the PRFs of a group of retinal ganglion cells , and found that the firs t PRF had most
spectral power in the low-frequency bands , cons is tent with our theoretical analys is . The stimulus
we used was a white-noise sequence—it will be interes ting to see how the informative subspace and
its spectral properties change for different s timuli such as colored noise. The ganglion cell layer of
the retina is a sys tem that is relatively well unders tood at the level of s ingle neurons . Therefore,
our results can readily be compared and connected to those obtained us ing conventional analys is
techniques . However, our approach has the potential to be especially useful in systems in which the
functional s ignificance of s ingle cell receptive fields is difficult to interpret.
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We usually assumed that each dimension of the response vector Y represents an electrode-recording
from a single neuron. However, the vector Y could also represent any other multi-dimensional mea-
surement of brain activity: For example, imaging modalities such as voltage-sens itive dye imaging
yield measurements at multiple pixels s imultaneous ly. Data from electro-phys iological data, e. g. lo-
cal field potentials , are often analyzed in frequency space, i. e. by looking at the energy of the s ignal
in different frequency bands . This also results in a multi-dimensional representation of the s ignal.
Us ing CCA, receptive fields can readily be estimated from these kinds of representations without
limiting attention to s ingle channels or extracting neural events .

Acknowledgments

We would like to thank A Gretton and J Eichhorn for useful discuss ions , and F Jäkel, J Butler and S Liebe for
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